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Abstract. We recast the Resonating Valence Bond theory, first introduced by Linus Pauling, in a
nonorthogonal ab initio Valence Bond formalism and apply the method to study some properties of the
anionic clusters Li−n (2 ≤ n ≤ 5). We show how to choose appropriate structures and orbitals, and also how
to use the so-called metallic orbitals. The problem of interpreting the role of a specific Valence Bond struc-
ture looking up its weight in the general wave function is elucidated. Information about the excited states
of the systems is obtained. The theory can make good qualitative predictions on the electronic behaviour
of the clusters by using a wave function that is a linear combination of a small set of structures. Pauling’s
theory is shown to be quite appropriate for describing anionic systems, specially the small ones, where the
loosely bounded electron largely influences the properties of the systems. We verify the preference of some
clusters for linear geometries.

PACS. 31.15.Qg Molecular dynamics and other numerical methods – 31.15.Rh Valence bond calculations
– 71.24.+q Electronic structure of clusters and nanoparticles

1 Introduction

To describe chemical bonds related to interatomic forces in
metals only the band theory (by forming Bloch functions
of the atomic orbitals) has been successful, not only be-
cause of the known computational difficulty of making Va-
lence Bond (VB) calculations, but also because there has
been a long-standing belief that localized covalent bonds
cannot be present in metals. In spite of this, an alternative
VB theory for metals has been known since 1938 due to
Linus Pauling [1], based on empirical arguments, though.

Pauling introduced the concept of metallic orbital,
necessary for describing the main properties of metals:
conductivity and mobility. Besides the ordinary covalent
(shared electron pair) bond, there are also those bonds
connected to the metallic orbital. Let us give an exam-
ple [2], that is important for the understanding of the role
of the metallic orbital. Consider a lithium crystal. There
are two ways in which the bonds can be arranged to form
Li2 molecules,

Li−− Li Li Li
| |

Li−− Li Li Li

These structures are resonant and the energy of this
synchronized resonance contributes to the stabilization of
the crystal. The stabilization becomes greater if there is
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also unsynchronized resonance such as

Li−− Li Li−− Li−
|

Li−− Li Li+ Li

in which one bond resonates independently from one po-
sition to another.

This new sort of resonance requires that the atom re-
ceiving an extra electron (forming Li−) has an orbital
available for its reception, the so-called metallic orbital.
The structures related to this unusual ressonance we call
Pauling structures. It is the unsynchronized resonance of
covalent bonds through a metal that provides a simple
explanation of its characteristic electric conductivity. The
valence bonds resonate from one position to another at
electronic frequencies, as determined by the resonance en-
ergy. In the presence of an applied electric field the elec-
trons tend to move from atom to atom, by shifting single
bonds exactly as indicated in the unsynchronized reso-
nance diagram above.

According to Pauling [3], the RVB theory of metals
gives energy bands similar to those obtained in the usual
band theory. There is no incompatibility between the two
descriptions, which may be considered as complementary.
Formally, the name Resonating Valence Bond is applied to
any VB theory based on a linear combination of resonating
structures, no matter whether we use Pauling structures
or not. We use this terminology so as to make reference
to the former Pauling’s RVB theory of metals.
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Only nowadays Pauling’s Resonating Valence Bond
(RVB) theory could be tested at the ab initio level, as done
by our group. The metallic behavior of some small alkali
metals, such as Li, attracted our attention, as they have
a single valence electron per atom. Mohallem et al. [4] re-
ported a work in which the Pauling structures, in addition
to the usual structures, were used to explain the “metallic
behavior” of the Li4 and Li6 clusters and some other prop-
erties. Vianna et al. [5] verified the metal-insulator transi-
tion present in the approximation of two H2 molecules at a
RVB level. They showed that the metallic orbital furnishes
a correct description of this phenomenon.

In the present work we are interested in studying some
small anionic lithium clusters. We know little of this sort
of clusters, due to the presence of an extra electron. Tra-
ditional VB structures based on covalent and ionic bonds
are not enough for describing their electronic state. So,
metallic bonds must be considered and, therefore, metal-
lic orbitals will become essential for describing correctly
their properties.

The most extensive study of these systems was made
by Boustani et al. [6], where they studied some charac-
teristics of Li−n clusters (2 ≤ n ≤ 9), such as geometric
structures and stability, using a relatively small basis set
and the multireference diexcited configuration interaction
method (MRD-CI). They found that the geometries of
the Li−n (n ≤ 5) species differ appreciably from those of
neutral as well as of cationic Li clusters. In the anionic
case they reported a preference for linear conformations
explained mainly by the decrease in the electrostatic re-
pulsion for such geometries. From the Li−5 cluster on, more
compact structures are preferred, although there is also a
stable linear Li−5 according to Boustani et al.

Our aim is to study the lowest energy states of these
clusters (n < 6) in their most stable geometries, by using
ab initio Pauling’s RVB method. We will compare our re-
sults with Molecular Orbital (MO) calculations and with
the literature. In Section 2 we treat the specific method-
ology used in all calculations. The study of the features
of the most interesting anionic lithium clusters is given
in Section 3. We then summarize our results and their
implications in Section 4.

2 Methodology

Our RVB method is described in details elsewhere [7], but
the main ideas are given as follows. The RVB wave func-
tion is written as a linear combination of structures that
will represent all possible chemical bonds. These struc-
tures are similar to the known Lewis structures, that give
an intuitive description of the chemical bonding of the sys-
tem. Choosing the appropriate structures is the first step
to carry out the calculations.

Consider a set of fNS (Wigner number [8]) spin eigen-
functions {Θk} that spans an irreducible representation
(irrep) Γα of given symmetry of the group of N ! per-
mutations, SN . This set can be obtained from a Rumer
diagram, see for instance [8]. Each Θk represents one pos-
sible pairing of spins. Then, consider an orbital configura-

tion Ω = K1K2 . . .KN that is a product of nonorthogonal
atomic orbitals Ki.

Associating a spin eigenfunction ΘK to the orbital
product Ω and antisymmetrizing under the interchange
of any pair of electrons, we have a structure

Φk = AΩΘk

where A is the antisymmetrizer operator.
From the fNS independent structures {Φk}, we select

only those that match the spatial symmetry of the system.
Therefore, different sets of orbitals should be necessary to
set a wave function that is invariant under all the spa-
tial symmetry operations of the system. It is necessary
to check whether there is any kind of linear dependence
among structures of the different sets of orbitals. Some-
times, examining the dissociation tendencies of the system
is helpful to choose an appropriate set of structures. The
wave function is then a linear combination of these care-
fully chosen structures,

Ψ =
∑

i
CiΦi, 〈Ψ |Ψ〉 = 1 .

The most important structures are those with con-
siderable weights. This property has to do with the co-
efficients (Ci) of each structure (Φi) in the RVB wave
function (Ψ). The structure weight (Wi) is defined as

Wi =
∑

j
CiSijCj ,

where Ci is the coefficient of structure Φi and Sij is the
overlap between structures Φi and Φj . According to the
multi-structure wave function defined above,

〈Ψ |Ψ〉 =
∑

ij
CiCj〈Φi|Φj〉 =

∑
ij
CiCjSij =

∑
i
Wi = 1

For comparison purposes, we renormalize the structure
weights so that the weightiest structure has weight 1.

The matrix elements to be evaluated are

Hkl = 〈Φk|H|Φl〉 , Skl = 〈Φk|Φl〉 ,

where H is the electronic Hamiltonian in the Born-
Oppenheimer approximation, as usual. The structure coef-
ficients Ck are obtained solving the usual secular equation:

HC = ESC .

MO-SCF, MO-SCF with MBPT2 correction and CISD
with quadratic convergence (QCISD) methods [9] were
also carried out with the same basis set for comparison
purposes. The results of literature [6] were recalculated
and some discrepancies were detected.

3 RVB study of some anionic lithium clusters

A. Calculation details
RVB calculations were applied to some states of Li−n

clusters (2 ≤ n ≤ 5). We are interested in the set of small
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Fig. 1. Geometry, point group and electronic state of the anionic lithium clusters.

anionic lithium clusters shown in Figure 1, where their
geometry, point group and electronic state are also given.

We associate to each atom a (10s2p) atomic centred
Gaussian basis set contracted to [4s2p] (Tab. 1). Each or-
bital is expanded in the basis functions of all centres and
optimized variationally. We treat only the valence elec-
trons and keep the inner shell electrons (Li1s) in a core
obtained by Hartree Fock (HF) calculations. To optimize
the orbitals, we implemented a version of the Davidon-
Fletcher-Powell variable metric method [10], mixed with
Pulay’s Direct Inversion of Iterative Subspace (DIIS) pro-
cedure for accelerating convergence [11]. The required gra-
dient vector is obtained through the generalized Brillouim
theorem [12]. The algorithm is similar to that adopted in
reference [13]. The orbitals are allowed to delocalize dur-
ing the optimization, which leads to vanishing coefficients
for conventional ionic structures, that is, VB structures
with doubly occupied orbitals. The unconventional ionic
structures used in this work allow two valence electrons in
the same Li atom, but occupying different orbitals. Some-
times, it is necessary to choose different optimized orbitals
for covalent and ionic structures in order to improve the
accuracy and energy of the calculations.

The geometries of the Li−n clusters were determined by
analytical gradient minimization procedure at HF level [9].
As usual, such geometries were also used in the RVB cal-
culations. Theoretical vibrational analysis has been per-
formed at the HF level to check whether the stationary
point on the BO surface is a local minimum.

B. How to choose the structures

The RVB structures are the principal tool of the
method. As we have already stated, they represent the
possible chemical bonds present in the systems. For in-
stance, consider the neutral Li3 cluster that has 3 valence
electrons. Its ground state is 2B2 C2v. There is also an ex-
cited species of symmetry D∞h, which is considered now.

Table 1. The [4s, 2p] basis set.

Exponents Contraction coefficients
S type
921.30 0.001367
138.70 0.010425
31.940 0.049859
9.3530 0.160701
3.1580 0.344604
1.1570 0.425197
0.4446 0.169468
S type
0.0200 1.000000
S type
0.0472 1.000000
S type
1.0514 1.000000
P type
0.1135 1.000000
P type
0.0700 1.000000

Its more important RVB structures are

o− o o · (E1) ,

· o o− o (E2) ,

where a line represents a pairing of electrons (a covalent
bond) and a lonely point represents an unpaired electron.
Even if we use more RVB structures, only one orbital on
each atom will be necessary to best represent a structure.
Of course, we use a linear combination of each symmetric
pair, like C1(E1 + E2), for keeping the global symmetry
of the system.

The treatment of the anionic Li−3 cluster is quite differ-
ent. There are four valence electrons and its ground state
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Fig. 2. (a) The RVB structures of linear anionic lithium clusters. (b) The RVB structures of some plane anionic lithium clusters.

is 1Σg
+ D∞h. The main RVB structures are

o− o · o · (E1) ,

· o · o− o (E2) ,

o− o− o (E3) .

The structures corresponding to the symmetric pair E1

and E2 (ionic structures) are the most representative ones.
Two points around the same centre represent two electrons
at the same atom, with paired spins, but occuping differ-
ent orbitals. In the case of structure E3, a typical Pauling
structure [4], it is fundamental to use two orbitals on the
same atom (the central atom). Otherwise, representing the
Li−3 cluster without the Pauling structure would be an in-
complete representation. There are no structures like that
in the neutral case. This situation occurs in all anionic
clusters considered here and, as long as their size increases,
the role of the Pauling structures becomes stronger, as we
will discuss soon. In accordance with Pauling [1], one of
the two orbitals is named “metallic orbital”, but it does
not need to be different from the other one. In the Li−3 case
the two central orbitals are symmetric and points towards
the periferic atoms.

The RVB structures chosen to perform the calculations
and their respective weights are shown in Figures 2(a)
and 2(b). In almost all cases two orbitals centred on each
atom to best represent the bonding of the systems are
necessary. Exceptions are the case of the plane Li−4 which
will be clarified soon and the plane Li−5 that is a diffi-

cult one. In this latter case, we must use three orbitals
centred on the central atom to represent a RVB structure,
because there are at least three different bonds: one point-
ing towards the top pair of atoms and the other two bonds
associated with the atoms of the base of the cluster. This
choice of orbitals accelerates convergence and improves the
accuracy of the calculated energies. The metallic character
of this sort of cluster increases with the number of atoms,
which makes necessary the use of an increasing number of
VB orbitals centred on the same atom. Therefore the num-
ber of resonating VB structures also increases as shown in
Figure 2(b) for the plane Li−5 cluster. Note that all struc-
tures have considerable weights in this case.

C. Characterizing the state of the system

Adapting the whole set of structures by symmetry, we
will be sure about the electronic state of the system, look-
ing at the structure coefficients. In the Li−2 case, for in-
stance, combinations of structures (shown in Fig. 2(a))
like (E1 − E2) and (E3 − E4) furnishes the energy of its
ground state 2Σu

+. On the other hand, combinations of
structures like (E1 + E2) and (E3 + E4) will lead us to
the excited state 2Σg

+. In the case of other linear clusters
the sum of completely symmetric pairs of structures fur-
nishes information about the ground state. For instance,
this is the case of combination of structures like (E1 +E2),
(E3 +E4) and so on, of the linear Li−4 . For the linear Li−5
cluster, if the structures (E1 +E2), (E3 +E4) and E5 are
used to set the RVB wave function, the state of the cluster
will be the state 1Σg

+.



A. D. Quintão et al.: Resonating Valence Bond calculations on small anionic lithium clusters 93

Fig. 3. The orbitals 2 and 3 of the C2v Li−4 cluster, both centred on the central atom of the cluster.

Table 2. Ground and excited states of SCF optimized anionic lithium clusters.

Cluster Simmetry State E
HF(a)

(4s,2p) E
VB(b)

(4s,2p) E
HF+corr(c)

(3s,1p) E
CISD(d)

(4s,2p)

Li−2 D∞h
2Σu

+ −14.88018 −14.88791 −14.79592 −14.90652

Li−3 D∞h
1Σg

+ −22.31938 −22.35205 −22.22021 −22.37836

D3h
3A′1 −22.32759 −22.33109 −22.36139

C2v
1B2 −22.32034 −22.32664 −22.35508

Li−4 D∞h
2Σg

+ −29.78694 −29.80279 −29.63000 −29.83340

C2v
2B2 −29.77854 −29.79509 −29.57176(e) −29.82730

Li−5 D∞h
1Σg

+ −37.20089 −37.25616 −37.04217 −37.28067

C2v
1A1 −37.20554 −37.25654 −37.04342 −37.29677

(a) Hartree-Fock energy of the SCF optimized cluster using the [4s, 2p] basis set (a.u.).

(b) Valence Bond energy of the SCF optimized cluster using the [4s, 2p] basis set (a.u.). All structures
of Figures 2(a) and 2(b) are considered for each cluster.

(c) Hartree-Fock energy plus Davidson correlation energy calculated using the [3s, 1p] basis set of [6]
(a.u.). These results are given in the literature [6].

(d) CISD energy calculated with quadratic convergence using the [4s, 2p] basis set (a.u.).

(e) There is an inconsistence in the literature [6]. The UHF energy calculated with the [3s, 1p] basis set
in [6] is −29.55251 a.u. Redoing the calculations, using the same basis set, we found −29.57176 a.u.
The first result was disconsidered.

The plane Li−3 will be important in the study of dissoci-
ation of the plane Li−4 [14]. Its properties are in agreement
with the other anionic trimers and with the literature [15].
There are two main plane species: a triplet of symmetry
A′1 (symmetry group D3h) and a singlet of symmetry B2

(symmetry group C2v) and higher energy. The most sta-
ble state is 3A′1 and the state 1B2 is a transition state.
In Figure 2(b) we can see that the completely symmetric
structures E1 and E4 are not appropriate to describe this
transition state, so they vanished.

The lowest energy state of the plane Li−4 is 2B2 and
the difference between two structures of the same sym-
metric pair is the combination expected. Because of this,
in case of plane Li−4 , completely symmetric structures like
E3 or E4, with the extra electron near the central atom,
must vanish to represent the 2B2 state. Note that for the
structures E7 and E8 of plane Li−4 , we use two different
orbitals on the central atom, one of them pointing to-
ward the top atom and the other one spreading inside
the lower triangle (see Fig. 3), so that the combination
(E7 − E8) becomes necessary for setting the lowest en-

ergy wave function. Only one orbital on the first atom is
enough for describing all set of structures of the plane Li−4
shown in Figure 2(b). If we want an excited state of the
plane Li−4 , with symmetry A1 for instance, we must use
the completely symmetric structures like those mentioned
above and the sum of the symmetric pairs.

In case of plane Li−5 , the ground-state wave function is
formed by the linear combination of the completely sym-
metric structures and the sum of the symmetric pairs of
structures shown in Figure 2(b).

D. The influence of the extra electron on the shape of the
small anionic lithium clusters

The existence of linear species as the most stable ones
is, as a matter of fact, intriguing. The state 1B2 of the
Li−3 C2v is a transition state, according to Gutowski et
al. [15]. Among the Li−4 clusters, the D∞h species is in fact
energetically preferable (see Tab. 2). The ground state 1A1

of the Li−5 C2v cluster is practically degenerate with the
state 1Σg

+ of the Li−5 D∞h cluster. The latter is found
to be, in fact, an unstable state, in disagreement with the
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Fig. 4. RVB charge densities along the x-axis of the linear anionic lithium clusters calculated using all RVB structures.

literature [6]. In order to check this, we have made tests
with various basis sets of different sizes, starting from the
[3s, 1p] of [6], up to the 6-311G(d). In all cases, we verify
the presence of imaginary frequencies at SCF level. From
the Li−6 cluster on, it is known that they have similar
shapes to their corresponding neutral systems. In this case
there are no linear geometries.

One of the reasons for the preference of less compact
structures (Li−n , 2 ≤ n ≤ 5) can be seen from the RVB dis-
tribution of electronic charge in the linear Li−n ions. There
are higher peaks of charge at the extreme regions of their
principal axis, as seen in Figure 4. An upper view of the
RVB charge density is also shown in Figure 5. The elec-
trostatic repulsion is relatively weak for such geometries,

making the linear clusters the most stable ones. In the Li−5
case, a tendency of the charge density to turn out more
compact is seen, because the central peak is almost similar
to the extreme ones (Fig. 4). We could say that we are in
a threshold situation: from the Li−5 cluster on the lowest
energy clusters are no more the linear ones; the Li−5 D∞h
is in fact an unstable state.

The charge density for plane Li−3 , Li−4 and Li−5 clus-
ters are shown in Figure 6. (For all density maps (Fig. 6)
the structures shown in Figure 2(b) were used.) Observe
the presence in Figure 6 of three-body bonds [4], as they
are named, common in plane clusters. They are character-
ized by peaks of charge inside their internal triangles. The
C2v Li−5 charge density is more delocalized, which makes it
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Fig. 5. Maps of density of all linear anionic lithium clusters.

necessary to use a larger number of structures, as it is seen
in Figure 2(b), to best represent the considerable metallic
character of the system. Observe that all structure weights
of the C2v Li−5 cluster are relevant. There is no principal
structure that by itself could represent the VB wave func-
tion as a whole, which happens for every cluster up to
Li−5 . This is a consequence of a localized wave function, as
the density maps show in Figures 5 and 6. The results of
the C2v Li−5 cluster suggest us how to treat larger plane
clusters in a RVB approach.

E. The RVB energies
In Table 2, energy values of states of the Li−n clusters

are given, for some different basis set and various levels of
calculation. They explain why a larger [4s, 2p] basis set is
used in the present work, compared to the [3s, 1p] basis
set used in reference [6]: The differences of our results to
those of reference [6] have the same magnitude as our MO
correlation energies, EQCISD−EHF, for the larger basis set.
The energy values obtained with the [4s, 2p] basis set seem
to be the best energies reported so far for those systems.

The RVB energy values are lower than the HF values,
as expected, but they are higher than the QCISD values.
Considering that we are using a very small set of RVB
structures, this result is expected [13,16]. On the other
hand, we believe that the use of a small well-chosen set of
structures is appropriate for getting a correct description

of the bonding of the system with a compact and intuitive
wave function. The Li−5 D∞h case is very illustrative. Us-
ing 10 orbitals, we can built 1050 RVB structures. How-
ever, only 5 structures are enough for describing the prop-
erties of the system. Numerical results can be improved
by enlarging the initial set of structures without any fur-
ther orbital optimization (VB-CI). If we used all possible
RVB structures, we would have a result equivalent to that
obtained making a MO full-CI calculation. The great ad-
vantage of working with the RVB method appears when
we are interested in qualitative aspects. Looking at the
charge densities in Figure 4, for instance, we could say
that the Li−5 D∞h cluster prefers to dissociate according
to the channel Li−5 → Li2 + Li−3 because the bonds be-
tween the central atom and its first neighbors are weaker
than the other ones. This behaviour is in accordance with
the linear Li−5 structures of Figure 2(a) and with the lit-
erature [6]. A study of the use of the RVB method for
dissociation purposes is done elsewhere [14].

F. Stability of the anionic lithium clusters

Once calculated the RVB energies, it is interesting to
investigate what the RVB wave function informs us about
the stability of those anionic lithium clusters. A relevant
quantity is the dependence of the binding energy per atom
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Fig. 6. RVB charge densities of D3hLi−3 , C2v Li−3 , Li−4 and Li−5 clusters.

Table 3. Binding energy per atom as a function of the number
of atoms of the anionic lithium clusters.

Cluster Simmetry State
E−
b
n

RVB (a)
E−
b
n

CISD (a)

Li−2 D∞h
2Σu

+ 6.91 8.97

Li−3 D∞h
1Σg

+ 11.49 14.48

Li−4 D∞h
2Σg

+ 11.68 14.60

Li−5 C2v
1A1 12.17 15.71

(a) Values in kcal/mol.

with the number of atoms E−b
n . This function is defined as

E−b
n

=
[E−1 + (n− 1)E1 − E−n ]

n
,

where E−k is the energy of the anionic cluster with k atoms
(Tab. 2). The E1 value calculated with the [4s, 2p] basis set
(Tab. 1) is −7.43121 a.u. E−1 is calculated as E−1 (RVB) =
−7.43469 a.u. and E−1 (CISD) = −7.44673 a.u. The results
of the calculations are reported in Table 3.

The RVB energy values of Table 3 show a trend that
agrees with the CISD trend and with calculations found
in the literature [6]. Large even-odd oscillations are not
expected in the interval (2 ≤ n ≤ 5). In fact maximum
peaks are waited at n = 3 and n = 7, in agreement with

the shell model of Knight [17], when the valence shell of
anionic clusters is full occupied.

Another quantity that informs us about the stability
of those small anionic clusters is the electron affinity of
Lin clusters. It is important to know wheather these clus-
ters are able to receive an extra electron. The adiabatic
electron affinity is given as the difference of energy be-
tween the optimal neutral clusters and the energy of Li−n
in its optimal geometry. Energies of neutral Lin clusters
in their optimal geometries, calculated using the [4s, 2p]
basis set, are shown in Table 4, as well as the number of
RVB structures used in the calculations.

The adiabatic electron affinities (EA) calculated are
also shown in Table 4. We can see that in fact the Lin
clusters are allowed to receive an extra electron and form
anionic stable anionic species. The result is also in agree-
ment with Boustani et al. [6].

4 Concluding remarks

We can reach the following conclusions from this work:
1) The basis set [4s, 2p] is fundamental for working

with small anionic lithium clusters. Compared to the
[3s, 1p] from [6], we obtained a relevant decrease in the
energy values at all levels.

2) Pauling’s RVB theory is appropriate for a VB de-
scription of anionic metallic systems. It would be difficult
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Table 4. Energy values of neutral lithium clusters calculated with the [4s, 2p] basis set (Tab. 1). The values of their adiabatic
electron affinities are also given.

Cluster Simmetry State ERVB (a) NRVB (b) ECISD (c) EARVB (d) EACISD (d)

Li2 D∞h
1Σg

+ −14.87383 (3) −14.89355 8.83 8.14

Li3 C2v
2B2 −22.31842 (4) −22.33895 22.98 24.73

Li4 D2h
1Ag −29.78122 (10) −29.81043 13.54 14.41

Li5 C2v
2A1 −37.23070 (13) −37.26734 16.21 18.47

(a) Valence Bond energies of the SCF optimized cluster using the [4s, 2p] basis set (a.u.).

(b) Number of structures used in the RVB calculations.

(c) CISD energies of the SCF optimized cluster calculated with quadratic convergence using the [4s, 2p]
basis set (a.u.).

(d) Valence Bond and CISD adiabatic electron affinities of Lin clusters (kcal/mol).

to describe correctly the electronic properties of such an-
ionic clusters using the traditional VB methodologies.

3) A small number of RVB structures is enough for get-
ting qualitative predictions of the behaviour of the systems
considered here. The structures must be chosen carefully,
though. It is noted that the number of structures necessary
for a complete description of the properties of the anionic
lithium clusters increases with the size of the cluster.

4) In case of the anionic lithium clusters, linear species
are the most stable ones (n < 5). The linear Li−5 is in fact
an exception, its state 1Σg

+ is an unstable state. This
property has not been predicted before. Calculations on
a HF level for the linear Li−5 show imaginary frequencies
with different basis sets. Only the planar Li−5 species is
stable. The RVB density along the principal axis of the lin-
ear Li−5 cluster has almost similar peaks of charge on each
atom, indicating a preference for more compact shapes. In
fact from the Li−5 species on, all anionic clusters are plane
or three-dimensional.

5) The C2v Li−5 cluster is interesting because its rele-
vant metallic character is shown as we examine its charge
density in Figure 6. This is more diffuse than the charge
density of other plane clusters treated in this work. We
verify that a larger number of resonating structures, like
those shown in Figure 2(b), are necessary to describe the
C2v species, and that they all have considerable weights.
More than two orbitals may be necessary on a centre to
represent the resonance among so different structures. On
the other hand, in case of the linear clusters and even the
C2v Li−4 one, it is noted that there is always one or two
pairs of structures that by itself can represent the RVB
wave function, that is more localized than the C2v Li−5
wave function. This latter cluster is the limit between the
simple clusters and the most complex ones, giving us a
hint of how to treat larger plane clusters in the RVB ap-
proach.

6) In general the RVB energy values are in agreement
with those obtained with higher correlation methods in a
qualitative sense. Quantitatively they are higher than the
QCISD energies but considering that we are working with
very small sets of structures, the result is expected.

Financial support by CNPQ (Brazilian agency) is acknowl-
edged.
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